Optimization of neural computations in a functional data-parallel language

Naums Mogers
GPU code optimization: **portability** versus **performance**

- **Manual optimization** → good performance
 → expensive to do
 → not portable
 → lack usability
 → does not support **new devices**

- **Autotuners**
 (PetaBricks, CLTune) → Functionally portable
 → **not performance-portable**
 → no structural optimizations
Existing approaches

High-level Neural Network syntax

- Caffe
- TensorFlow
- Theano
- Torch

Optimization & compilation methods

Manual implementation

Hardware

- NVIDIA
- AMD
- Mali
- FPGA
Existing approaches

High-level Neural Network syntax

- Caffe
- TensorFlow
- theano
- torch

Optimization & compilation methods

- cuDNN

Manual implementation

Hardware

- NVIDIA
- AMD
- Mali
- FPGA
Existing approaches

The Lift language

- Functional
 - Abstracted from hardware
 - Algorithm-centred
 - Pure and safe
 - High-level, easy to use
- Data-parallel
Existing approaches

The Lift language

- **Functional**
 - Abstracted from hardware
 - Algorithm-centred
 - Pure and safe
 - High-level, easy to use
- **Data-parallel**
- Chooses the best OpenCL derivation for the target hardware
 - Both functionally and performance **portable**
 - Doesn’t require **hardware knowledge**
Existing approaches

Lift’s rewrite rules

- Semantics-preserving transformations encoding fine-grained optimizations
Existing approaches

Lift’s rewrite rules

- Semantics-preserving transformations encoding fine-grained optimizations

Vectorization
Existing approaches

Lift’s rewrite rules

- Semantics-preserving transformations encoding fine-grained optimizations
 Vectorization

Memory tiling
Existing approaches

Lift’s rewrite rules

- Semantics-preserving transformations encoding fine-grained optimizations

 Vectorization

 Memory coalescing

Memory tiling
Existing approaches

Lift’s rewrite rules

- Semantics-preserving transformations encoding fine-grained optimizations
 - Vectorization
 - Blocking
 - Memory coalescing
 - Memory tiling
Existing approaches

Lift’s rewrite rules

- Semantics-preserving transformations encoding fine-grained optimizations
- Vectorization
- Blocking
- ND mapping
- Memory coalescing
- Memory tiling
Existing approaches

Lift’s rewrite rules

- Semantics-preserving transformations encoding fine-grained optimizations
- Vectorization
- Blocking
- Memory coalescing
- Memory tiling
- ND mapping
- Simplification
The method: Neural Network-specific extension of the Lift language
The method

The extension:

- Neural Network (NN)-specific optimizations
The method

The user

- Encodes the NN in Lift
- Specifies the minimum required accuracy
The method

The user

- Encodes the NN in Lift
- Specifies the minimum required accuracy

Lift

- Applies generic optimizations
- Optimizes the NN code without preserving semantics
- Abides by the required accuracy
Proposed optimizations:

- Approximations
 - Floating operations
 - Different layer precisions
 - Gradient quantization
Proposed optimizations:

- Approximations
 - Floating operations
 - Different layer precisions
 - Gradient quantization

- NN configuration autotuning
 - Layer number
 - Layer size
 - Training batch size
 - Learning rate
The extension will be evaluated by

- Implementing Convolutional Neural Network (CNN) forward-propagation and training in Lift
The extension will be evaluated by:

- Implementing Convolutional Neural Network (CNN) forward-propagation and training in Lift

- Comparing CNN performance in domain-specific Lift vs generic Lift
Evaluation

The extension will be evaluated by

- Implementing Convolutional Neural Network (CNN) forward-propagation and training in Lift
- Comparing CNN performance in domain-specific Lift vs generic Lift
- Comparing CNN performance in domain-specific Lift vs Caffe
Evaluation

Evaluation metrics

- Forward-propagation runtime
- Training runtime
- The range of platforms supported
Conclusion

- Current GPU optimization methods are not performance portable
- Lift approach is performance portable
- Extend Lift to Neural Network-specific optimizations