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Abstract

Parallel patterns (e.g., map, reduce) have gained traction as
an abstraction for targeting parallel accelerators and are a
promising answer to the performance portability problem.
However, compiling high-level programs into efficient low-
level parallel code is challenging. Current approaches start
from a high-level parallel IR and proceed to emit GPU code
directly in one big step. Fixed strategies are used to optimize
and map parallelism exploiting properties of a particular GPU
generation leading to performance portability issues.

We introduce the Lirt IR, a new data-parallel IR which en-
codes OpenCL-specific constructs as functional patterns. Our
prior work has shown that this functional nature simplifies
the exploration of optimizations and mapping of parallelism
from portable high-level programs using rewrite-rules.

This paper describes how Lirt IR programs are compiled
into efficient OpenCL code. This is non-trivial as many per-
formance sensitive details such as memory allocation, array
accesses or synchronization are not explicitly represented
in the Lirr IR. We present techniques which overcome this
challenge by exploiting the pattern’s high-level semantics.
Our evaluation shows that the LiFr IR is flexible enough to ex-
press GPU programs with complex optimizations achieving
performance on par with manually optimized code.

1.

GPUs (Graphics Processing Units) and other parallel acceler-
ators are now commonplace in computing systems. Their per-
formance is orders of magnitude higher than traditional CPUs
making them attractive for many application domains. How-
ever, achieving their full performance potential is extremely
hard, even for experienced programmers. This requires ultra-
specialized kernels written in low-level languages such as
OpenCL. This inevitably leads to code that is not performance
portable across different hardware.

High-level languages such as Lift [18], Accelerate [15],
Delite [19], StreamlIt [20] or Halide [16] have been proposed
to ease programming of GPUs. These approaches are all
based on parallel patterns, a concept developed in the late
80’s [7]. Parallel patterns are deeply rooted in functional
programming concepts such as function composition and
nesting, and absence of side-effects. When using parallel
patterns, programs are expressed without committing to a
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particular implementation which is the key for achieving
performance portability across parallel architectures.

From the compiler point of view, the semantic informa-
tion associated with parallel patterns offers a unique oppor-
tunity for optimization. These abstractions make it is easier
to reason about parallelism and apply optimizations with-
out the need for complex analysis. However, designing an
IR (Internal Representation) that preserves this semantic in-
formation throughout the compilation pipeline is difficult.
Most existing approaches either lower the parallel primitives
into loop-based code, loosing high-level semantic informa-
tion, or directly produce GPU code using fixed optimization
strategies. This inevitably results in missed opportunities for
optimizations or performance portability issues.

In this paper, we advocate the use of a functional data-
parallel IR which expresses OpenCL-specific constructs. Our
functional IR is built on top of lambda-calculus and can
express a whole computational kernel as a series of nested and
composed function calls. It is equipped with a dependent type
system that reasons about array sizes and value ranges for
variables, preserving important semantic information from
the high-level patterns. The information available in the types
is used at multiple stages such as when performing array
allocation, index calculation, and even synchronization and
control flow simplification.

One downside of a functional IR is that all operations
are represented as functions which produce intermediate
results. This issue is addressed by fusing chains of composed
or nested functions which only affect the data layout (e.g.,
zip or gather). This involves recording information about
the accessed data in a view structure which is then used to
emit the appropriate array access expression. These indexing
expressions are then simplified using a symbolic algebraic
simplifier that relies on type information (e.g., array length
and value ranges). This leads to the generation of highly
efficient GPU code competitive with hand-tuned kernels.

To summarize, we make the following contributions:

e We present a new data-parallel functional IR that targets
the OpenCL programming model;

® We show how semantic information embedded in the IR
is used in various phases such as memory allocation, ar-
ray access generation and optimizations, synchronization
minimization and control-flow simplification;
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e We demonstrate that the generated GPU code performance
is on par with manually optimized OpenCL code.

The rest of the paper is organized as follows: Section 2
reviews related work and motivates our approach. Sections 3
and 4 discuss our LirT pattern based function abstraction
of OpenCL and its internal representation. Section 5 dis-
cusses the compiler implementation and optimizations for
high-performance code generation. Sections 6 and 7 present
experimental setup and evaluation before section 8 concludes.

2. Related Work and Motivation

The problem of producing efficient GPU code has been well
studied over the years. Figure 1 gives an overview of the
different approaches related to this paper. Loop-based auto-
parallelization techniques have been extensively studied for
languages like C. Recent work on polyhedral compilation [1]
for instance has pushed the boundaries of such techniques
for GPU code generation. However, these techniques only
operate on loops and requires certain property such as affine
indices to work effectively.

In the last decade, there have been a shift towards algorith-
mic skeletons [7] and DSLs (Domain Specific Languages).
These approaches offer the advantage of exploiting high-level
and domain-specific information. The simplest approaches
are based on parametric library implementation of skele-
tons such as Thrust [2] and SkelCL [17]. However, these
approaches are not portable and more importantly, cannot
perform optimizations across library calls.

A different approach consists of lowering the applications
to a functional representation which is then compiled to
GPU code. This process involves mapping of parallelism,
performing optimizations such as fusion of operations and
finally code generation. This approach is used by a many
systems such as Copperhead [5], Delite [3], Accelerate [6,
15], LiquidMetal [9], HiDP [21], Halide [16] and NOVA [8].

The drawback of such approaches is that the mechanism
to map parallelism and optimize code is performed within the
code generator and in general uses a fixed strategy. This
means that it might be difficult to achieve performance
portability due to the large gap to fill between the functional
IR and the GPU code that will eventually be produced. In
contrast, we advocate the use of a low-level IR which encodes
OpenCL-specific constructs as we will see in the next section.
The decision of how to optimize code and map parallelism
are taken during the conversion from the generic functional
IR and the OpenCL-specific Lirr IR. This clearly separates
the concerns of optimization and parallelism mapping from
the actual process of code generation.

The Lirr IR introduced in this paper is capable of express-
ing many different OpenCL mappings and optimizations in a
pattern-based and functional style. This complements prior
work which studied the problem of deciding how to find
optimal mapping using analysis-driven heuristics [12] or se-
mantic preserving rewrite-rules as in our own prior work [18].
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Figure 1. GPU code generation landscape.

The main contribution of this paper is to explain how the Lirt
compiler produces efficient OpenCL code once the original
program has been lowered and mapped into the Lirt IL. As
we will see, generating high performance OpenCL code relies
on using the parallel patterns’ semantic information encoded
in the IR.

3. The Lirr Intermediate Language

This section presents Lirr, a functional data-parallel interme-
diate language designed as a target for high-level languages
based on parallel patterns. It is similar in spirit to prior pub-
lished work on data-parallel representation [4, 10, 11, 14]
and complements our prior work [18]. The Lirr IL (Interme-
diate Language) specifically targets OpenCL, although many
concepts presented are more widely applicable.

3.1 Design Principles

High-level languages based on parallel patterns capture rich
information about the algorithmic structure of programs. Take
the computation of the dot product as an example:

dot(x, y) = reduce(+, 0, map(x, zip(x, y)))

Here the zip pattern captures that arrays x and y are accessed
pairwise. Furthermore, the map pattern allows the compiler
to perform the multiplication in parallel, as well as the final
summation, expressed using the reduce pattern.

Our most important design goal is to preserve algorithmic
information for as long as possible in the compiler. The
Lirr intermediate language achieves this by expressing the
OpenCL programming model functionally. One of the key
advantages of the Lirr approach is that it is possible to
decouple the problem of mapping and exploiting parallelism,
which has been covered in our prior work [18], from the code
generation process, which is what this paper is about.

3.2 Intermediate Language

The Lirr IL expresses program as compositions and nesting
of functions which operate on arrays. The foundation of the
Lirr IL is lambda calculus which formalizes the reasoning
about functions, their composition, nesting and application.



In the following section we introduce the predefined pat-
terns used as building blocks to express programs. Besides
these patterns, the Lirt IL also supports user functions writ-
ten in C operating on scalar values, which implement the
application specific computations.

Algorithmic Patterns The Lirr IL supports four algorith-
mic patterns corresponding to sequential implementations of
the well known map and reduce patterns, the identity and
the iterate primitive. The iterate pattern applies a function
f m times by re-injecting the output of each iteration as the
input of the next. The length of the output array is inferred
as a function 4 of the number of iterations m, the input array
length n and the change of the array length by a single itera-
tion captured by the function g. We will discuss in section 5
how we automatically infer the length of the output array.

mapSeq(f,|w [+ [ [n ) =@ [fe | - [row
reduceSeq(z, f,| x| [ [x]) = /¢ (UG x).x) - )0
(o[ [ =[] [o o]
iterate” (f.[ v [ [v|x ) = fC S EIEEIE)
m times
Data Layout Patterns The Lirt IL defines a set of patterns

that do not perform any computation but simply reorganize
the data layout. The first two patterns, split and join, add or
remove a dimension from the input array.

split”( x1|x2||||||||x)
CLLILITIT [ITE
m
joina [o [ [ T ]~ [~
-Gl T

The gather and scatter patterns apply a permutation
function f which remaps indices when reading from or
writing to arrays respectively. Combined with split and join,
for instance, these primitives can express matrix transposition:

. nrows . . . ..
split o scatter(i — (i mod ncols) X nrows + i /ncols) o join

gather(f,
scatter(f,

- [=]-

) =’ Xf(1) | Xf2) | | Xf(n)

E

Xf) | Xr@) | | X

BEIRE

The zip pattern is used to combine two arrays of elements
into a single array of pairs while the get primitive projects a
component of a tuple.

zip(’ X |X2 | X || 1 |yz | Yu |)
=@ @] - [
get,((x1, x2,..., %)) = x;
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Finally, slide applies a moving window to the input data
and is used to express stencil computations. For instance,
mapSeq(reduceSeq(0,+)) o slide(3, 1,input) expresses a sim-
ple 3-point stencil. Multi-dimensional stencils are also ex-
pressible by composing several slide functions interleaved
with transpositions (not shown for space constraint).

slide(size, step,| xi |xz||||||| Xa )
step
I
= x1|x2|... | || ...... | Xy
size
Parallel Patterns OpenCL provides a hierarchical organi-

zation of parallelism where threads are grouped into work
groups of local threads or a flat organization where threads
are simply global. This hierarchy is represented with three
patterns, where a mapLcl must be nested inside of mapWrg:

0,1,2} 0,1,2}

mapGlb®'?  mapWrg' mapLecl'
OpenCL supports up to three thread dimensions, represented
by the superscripts 0, 1,2. The semantic of these patterns is
identical to mapSeq, except that f is applied in parallel.

Address Space Patterns OpenCL distinguishes between
global, local and private address spaces. The Lirt IL offers
three corresponding primitives which wrap a function and
influence the address space used to store the output:
toGlobal toLocal toPrivate

For example, a sequential copy of an array x into local mem-
ory is expressed as: foLocal(mapSeq(id))(x). This design de-
couples the decision of where to store data (i.e., the address
space) from the decision of how the data is produced (i.e.,
sequentially or in parallel).

Vectorize Pattern The Lirt IL supports two primitives that
transforms data between scalar and vector types, and one
pattern which applies a function to a vector.

_ .
asVector() = X1, X2, ..., Xp, X;1is scalar

_—
asScalar(x;, x,, ..., x,) = -

o Xn) = f(x0), f(x), .., fxn)

—_—
mapVec(f, x1, xa, ..

During code generation, the function f is transformed
into a vectorized form. This transformation is straightforward
for functions based on simple arithmetic operations since
OpenCL already defines vectorized forms for these operation.
In the other more complicated cases, the code generator
simply applies f to each scalar in the vector.



I partialDot(x: [float]ly, y: [float]ly) =

2 (join o mapWrg®(

3 joino toGlobal (machlO(mapSeq(id))) o split1 o
4 iterate6( joino

5 machlO( toLocal (mapSeq(id)) o

6 reduceSeq(add, 0) )o

7 split2 )o

8 join omapLcl?( toLocal (mapSeq(id)) o

9 reduceSeq(multAndSumUp, 0) )osplit?

10 Dosplit'™)( zip(x, y) )
Listing 1. Lirr IL implementation of partial dot product

3.3 Example: Dot Product in the Lirt IL

Listing 1 shows one possible implementation of dot product
expressed in the Lirr IL. The program is represented using a
functional style, therefore, the program is read from right to
left instead of the familiar left to right common in imperative
programming. Furthermore, to simplify the notation we use
the o symbol to denote sequential function composition, i.e.,
(f 0 8)(x) = f(g(x)).

In the program of Listing 1 the input arrays x and y are
combined using the zip pattern in line 10. The zipped array
is then split into chunks of size 128 (line 10). A work group
processes a single chunk using the mapWrg pattern (line 2)
before combining the computed chunks using the join pattern
(line 2). Inside of a work group we perform three steps to
process a chunk of 128 elements: 1) we split the chunk further
into pairs of two zipped elements, which we multiply and
add up before copying the computed result into local memory
(lines 8 and 9); 2) we iteratively reduce two elements at a time
in local memory (lines 5 and 7); 3) we copy the computed
result back into global memory (line 3).

Note that the code shown here corresponds to a single

OpenCL kernel which only computes a partial dot product.

We focus on this OpenCL kernel and omit a second kernel
which sums up all intermediate results, because the vast
majority of the runtime is spent in the first kernel.

3.4 Summary

In this section we have discussed the design of the Lirr
functional data-parallel intermediate language. It is similar in
style to prior work [4, 14, 18] and is OpenCL specific. The
Lirr IL expresses very precisely how programs are mapped
to the OpenCL programming model, as we have seen for the
dot product example. The following section describes how
this language is represented in our compiler. Section 5 will
then describe how efficient OpenCL code is produced.

4. The Lirr Intermediate Representation

This section introduces the Lirt Intermediate Representation.

All programs expressible in the LiFT intermediate language
can be represented by the Lirr IR. One of the key features of
the Lirr IR is that it preserves a functional representation of
the program all the way through.
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n: Int

MapLcl
f: Lambda

Figure 2. Class diagram of the Lirr IR.

4.1 Organization of Classes

Programs are represented as graphs where nodes are imple-
mented as objects. The use of a graph-based representation
avoids the problem of performing extensive renaming when
transforming functional programs [13]. The class diagram of
the LiFr IR in Figure 2 shows two main classes: expressions
(Expr) and function declarations (FunDecl).

Expressions represent values and have a type associated
with. Expressions are either literals, parameters or function
calls. Literals represent compile time known constants such
as 3.4f, arrays or tuples. Parameters are used inside functions
and their values are the arguments of a function call. Finally,
function calls connect a function to be called (a FunDecl)
with its arguments (Exprs).

Function Declarations correspond to either a lambda, a
predefined pattern or a user function. Lambdas are anony-
mous function declarations with parameters and a body which
is evaluated when the lambda is called. A pattern is a built-in
function such as map or reduce. The UserFun corresponds to
user-defined functions expressed in a subset of the C language
operating on non-array data types.

4.2 Lirr IR Example

Figure 3 shows the Lirr IR of the dot-product program from
Listing 1. The plain arrows show how object reference each
other. The top left node labeled Lambda?Z is the root node
of the graph taking two parameters and its body implements
dot-product as a sequence of function calls.

The dashed arrows visualizes the way the data flows
through the IR. The inputs x and y are first used as an input
to the zip function which is then fed into a call to split(128).
Then the the results of the split is fed into the mapWrg
function. The function which is applied to each chunk of 128
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Figure 3. Lirt IR for dot-product example

elements is represented as a lambda which processes the input
in three steps. First, the data is moved from global to local

memory by performing a partial reduction (labeled glbToLcl).

Then, the data flows to a function which iteratively reduces
the elements in local memory (iteration). Finally, the data is
moved back from local memory to global memory(lclToGIb),

exits the mapWrg and the last join is applied to return the
final result.

4.3 Lambda and Data Flow

Lambdas appear in several places in the IR graph and encode
the data flow explicitly. For example, focusing on the iteration
part of the graph, we see that a Lambda node is used below
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Figure 4. Overview of the Lirr compilation stages.

the Iterate node. To understand what the lambda does, we
can look back at Listing 1, lines 4— 7 copied here:

iterate®( joinomachlO( ... )o split2 )

This notation is only syntactic sugar for:
iterate®( A p . join(mapLcl®(..., split?(p))) )

The lambda (1) makes the data flow explicit, i.e. the iterate
pattern passing its input via the parameter p first to split
which then passes it to mapLcl and join.

5. Compilation Flow

Figure 4 shows the stages involved in compiling the Lirr IR
into efficient OpenCL code. The compilation starts by ana-
lyzing type information which is key for high-performance
code generation. This information is used heavily in the sub-
sequent memory allocation and array accesses generation
passes. The barrier elimination stage minimizes the number
of synchronizations required for correct parallel code. Finally,
the OpenCL code generation performs a last final optimiza-
tions to simplify control flow.

5.1 Type System and Analysis

The Lirt compiler implements a dependent type system which
keeps track of the length and shapes of nested arrays. Besides
array types, the type system supports scalar types (e.g.,
int, float), vector types, and tuple types. While vector types
correspond to OpenCL vector data types (e.g., int2, float4)
tuples are represented as structs. Array types can be nested
to represent multi-dimensional arrays. In addition, arrays
carry information about the length of each dimension in their
type. These length information are arithmetic expressions of
operations on natural numbers larger than zero and named
variables which are unknown at compiler time. For example,
given an array x of length n where the type of the elements is
float we write the type of x as [float],. Applying the array x
to the split " pattern results in the type [[float],;]n/m-

The types of function bodies are automatically inferred
from the parameter types by traversing the graph following
the data flow, as indicated by the dotted arrows in Figure 3.

5.2 Memory Allocation

A straightforward memory allocator would allocate a new
output buffer for every single FunCall node. However, this
would be very inefficient as data layout patterns, such as
split, only change the way memory is accessed but do not
modify the actual data. Memory allocation is, therefore,
only performed for functions actually modifying data. These
are FunCall nodes where the called function contains a
UserFun node, such as the UserFun(add) node in Figure 3.



input :Lambda expression representing a program

output : Expressions annotated with address space information
inferAddressSpaceProg(lambda)
1 foreach param in lambda.params do
2 | if param.type is ScalarType then param.as = PrivateMemory;
3 | else param.as = GlobalMemory;

4 inferASExpr (lambda.body, null)

inferASExpr (expr, writeTo)
5 switch expr.type do
6 | case Literal expr.as = PrivateMemory;

7 | case Param assert (expr.as != null);
8 | case FunCall

9 foreach arg in expr.args do

10 LinferASExpr(arg, writeTo)

1 switch exprf.type do

12 case is UserFun

13 if writeTo != null then expr.as = writeTo;

14 Lelse expr.as = inferASFromArgs (expr.args);

15 case is Lambda inferASFunCall (exprf, expr.args, writeTo);
16 case is toPrivate

17 inferASFunCall (expr.f.lambda, expr.args, PrivateMemory);
18 case is toLocal

19 inferASFunCall (expr.f.lambda, expr.args, LocalMemory);
20 case is toGlobal

21 inferASFunCall (exprf.lambda, expr.args, GlobalMemory);
2 case is Reduce

23 inferASFunCall (exprff, expr.args, expr.f.init.as);

24 case is Iterate or Map

25 inferASFunCall (exprf.f, exprargs, writeTo);

26 otherwise do expr.as = expr.args.as;

inferASFunCall (lambda, args, writeTo)
27 foreach p in lambda.params and a in args do p.as = a.as;
28 inferASExpr (lambda.body, writeTo)

Algorithm 1: Recursive address space inference algorithm

For these nodes, the compiler uses the array length informa-
tion from the type to compute the size of the memory buffer
required. When a data layout pattern is encountered, an inter-
nal data structure called view is created, which remembers
how memory should be accessed by the subsequent functions.
Details of the views are discussed in subsection 5.3.
Memory is allocated in one of three OpenCL address
spaces. Algorithm 1 determines the address space of each
allocation. First, each parameters of the lambda expression
are processed where scalar are assigned to Private memory
and Global memory is used for all others as required by
OpenCL. Then, the body of the lambda is visited in line 4.
The function inferASExpr determines the address space
of a given expression based on its second parameter writeTo
or its function arguments in case writeTo is null. As we
have exactly three subclasses of Expr we consider these
as separate cases: Literals reside in the Private memory;
Params have their address space set when their function is
called, as we have already seen above; FunCalls determine
the address space of their arguments and then investigate
which function was called. UserFun take their address space
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from the writeTo argument or inferred it from the address
space of its arguments; if all arguments have the same address
space, the user function will write into the same address space,
otherwise it writes to global memory by default.

The toPrivate, toLocal, toGlobal functions change the
writeTo argument before recursing within their nested func-
tion to produce the output in a specific address space. Finally,
Reduce directly writes into the memory of the initializer ex-
pression and has, therefore, the same address space.

5.3 Multi-Dimensional Array Accesses

In the Lirr IR, arrays are not accessed explicitly but implicitly;
the patterns determine which thread accesses which element
in memory. This design simplifies the process of lowering
high-level programs to the LiFt IR and guarantees that data
races are avoided by construction since no arbitrary accesses
into memory are permitted. However, this introduces two
main challenges when compiling the Lirr IR: First, avoiding
unnecessary intermediate results arising from function which
change only the data layout; And, secondly, generating
efficient accesses to multi-dimensional arrays which have
a flat representation in memory.

Example Consider the following dot product example, par-
tially copied again here for convenience:

1 (joinomapWrgO(

2 join omapLcl®( ...

3 reduceSeq(A(a,xy)— a+ (xyoXxy;),0)) osplit?
4 Dosplit™)( zip(x, y) )

We are interested in understanding how the arrays x and y

are accessed inside the lambda in line 3 and, ultimately,
how to generate code to express these accesses. This is not
obvious, as the arrays are first combined using zip and then
split into chunks of size 128 in line 4. When processing a
single chunk inside a work group (mapWrg in line 1), the
array is further split into smaller chunks of two elements
(line 3) and every local thread (mapLcl in line 2) performs
a sequential reduction. Individual elements of the arrays are
accessed using the xy variable. The xy, indicates an access to
the first element of the tuple, which is an element of array x.

View Construction A view is an internal data structure
which stores information for generating array accesses. Func-
tions that only change the data layout of an array produce a
view instead of allocating and writing to a new array.

To generate the array access for the xy, expression from
our example, we traverse the IR following the data flow. For
each node we construct a view representing how the particular
node influences the array access. The resulting view structure
is shown on the left hand side of Figure 5 where each view is
connected to its predecessor view. For example, the ZipView
has two predecessors, since the two arrays x and y have been
combined. Each map pattern results in a ArrayAccessView
which emulates an access in one dimension of the array
by the map function. Nested ArrayAccessViews, therefore,
correspond to accesses to multi-dimensional arrays.



I (CCCwg_idxM+1_id) /M) +(((wg_idxM+1_id)mod M)XN)) /NI)XN+(((wg_idxM+1_id) /M) +(((wg_idxM+1_id)mod M)XN))mod N

2 (C wg_id + 1_id XN) /N)xXN+( wg_id + 1_id XN) mod N
3 1_id XN+ wg_id
Figure 6. Simplification process of automatically generated array indices.
Array Stack Tuple Stack 1 matrlerOansposeO(x.: [[float]lyly) =
2 (mapWrg"” (mapLcl®(id)) o
(1 [0] 3 splitV o gather (A(i) — i/M + (imod M) x N) o join) (x)
[l [0] Here the join, gather and split patterns flatten the two-
) 2 dimensional matrix, rearrange the indices with a stride before
(i, i] (01 splitting the array in two dimensions. When generating the
(@x Lid)+1] [0] .read accesses for the id fu.nctlon, follgwmg the me.thogology
introduced above, we obtain the array index shown in Figure 6
ArrayAccessView(wg_id) [wg_id, 2% I_id) +1] (0] line 1. While this array index expression is correct it is also
(@ xLid)+ (128 x wg_id)+1]  [0] quite lopg compar.ed to the l.Il~deX a huma%n c.ould write for
) 4 performing a matrix transposition, shown in line 3.
ZipView [(@2x_id) + (128 x wg_id) +i]  [] However, a standard compiler would be unable to sim-

! 0

x[(2 x 1_id) + (128 X wg_id) + i]

Figure 5. Views constructed for the generation of the first
memory access of dot product (on the left) and consumption
of views to generate an array index (on the right).

View Consumption Once the view structure is constructed,
all information required for generating accesses is available.
An array index expression is calculated by consuming this
information in the opposite order of construction, i.e., top-to-
bottom. This process is illustrated on the right hand side of
Figure 5 with the resulting array access at the bottom. The
constructed view is shown on left hand side. The Tuple Stack
on the right side contains information about tuple access
which determine which array is being accessed. The Array
Stack in the middle records information about which element
of the array is being accessed.

Starting from the top with two empty stacks, we process
the TupleAccessView(0) pushing the first component of a
tuple, i.e., 0, onto the tuple stack. Then an ArrayAccessView
pushes a new variable (i) on the stack indexing the array in
one dimension. Another ArrayAccessView pushes another
index variable (I_id) on the stack. The SplitView pops two
indices from the stack and combines them into a one di-
mensional index using the split factor, linearizing the array
access. The ZipView pops from the tuple stack and uses this
information to decide which view should be visited next: the
MemoryView(x). Finally, we reach a memory view which is
used to emit the final index to the memory of input x.

Simplifying Array Accesses If we follow the approach
described above we will obtain correct array indices, however,
this can lead to long and complex expressions. We illustrate
this issue using matrix transposition, expressed in LiFT as:
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plify this expression since important information about value
ranges is missing. In contrast, the Lirr compiler is able to
derive the simplified form using a symbolic simplification
mechanism exploiting domain knowledge. The simplification
process follows a set of algebraic rules exploiting properties
of arithmetic operators supported in the compiler (additions,
multiplications, integer divisions, fractions, powers and loga-
rithms). A small subset of the rules supported is shown below:

x/y=0, ifx<yandy#0 e))
(xXy+2/y=x+z/y, ify+0 2)
xmody=x, ifx<yandy=#0 3)
(x/y)Xy+xmody=x, ify#0 4
(xxy)ymody=0, ify+#0 4)

(x+y)modz=(xmodz+ymodz)modz, ifz#0 (6)

The type system exploits domain specific knowledge by
inferring range information for every variable. For example,
the wg_id variable corresponding to the maplirg, ranges from O
to M, which is the row length of the input matrix. Similarly,
the 1_id variable corresponding to the mapLcl, has values
between 0 and N since it indexes an array split in chunks of
N. The expression (wg_id x M + 1_id) mod M can, therefore,
be simplified to 1_id using rule 6 to distribute the modulo
followed by rules 3 and 5 to simplify the remaining modulo
operations. A traditional OpenCL compiler is not able to
simplify this code, as it is missing the information that wg_id
is positive and smaller than M. Lines 2 and 3 in Figure 6 show
the expression after a few simplification steps. This results in
the same compact array index a human would write.

In one case, disabling the simplification let to the genera-
tion of several MB of OpenCL code. By applying arithmetic
simplification we generate concise indices which reduce code
size and speed up execution as costly operations such as
modulo can often be simplified away. We will investigate the
performance benefits in section 7.



5.4 Barrier Elimination

When different threads access the same memory location
they must synchronize to ensure memory consistency. When
compiling the Lirt IR, this corresponds to generating an ap-
propriate synchronization primitive after each occurrence of
a parallel map pattern. A return is emitted after the mapGIb
and mapWrg patterns, since OpenCL does not support syn-
chronization across work groups. For mapLcl a barrier is
emitted synchronizing all threads in the work group.
Sometimes these barriers are not required, for example,
when there is no sharing because all threads continue oper-
ating on the same memory locations. We take an approach
of safety first, were a barrier is emitted by default and is
only removed if we can infer from the context that it is not
required. The key insight for this barrier elimination process
is the fact that the Lirr IL only allows sharing of data by
using the split, join, gather or scatter patterns. Therefore, we
look for sequences of mapLcl calls which have no split, join,
gather, or scatter between them and mark them specially.
These marked mapLcl function calls will not emit a barrier
in the OpenCL code generation stage. We also eliminate one
barrier when two mapLcl appear inside of a zip since the two
branches of a zip can be executed completely independently.

5.5 OpenCL Code Generation

The final stage in the Lirt compilation pipeline is the OpenCL
code generation where low-level optimizations are performed
to precisely control the generated code. To generate the
OpenCL code, the Lirr IR graph is traversed following the
data flow and a matching OpenCL code snippets is generated
for every pattern. The generated kernel for the dot product
example is shown in Figure 7 with only minor cosmetic
changes made by hand for presentation purpose (renamed
variables, removed comments, removed extra parenthesis).
No OpenCL code is generated for patterns such as split and
toLocal since their effect have been recorded in the views. For
the different map patterns, for loops are generated, which for
the parallel variations will be executed in parallel by multiple
work groups or threads, such as the loop in in line 7. For
the reduceSeq pattern, a loop with an accumulation variable
(e.g., in line 10) is generated calling its function in every
iteration. The code generated for iterate spans lines 17 to 29
with double buffering initializing two pointers in line 18 and
swapping the pointers after each iteration in lines 27 and 28.

Control Flow Simplification The Lirr compiler performs
control flow simplification using the extra semantic infor-
mation available in patterns and types. A straightforward
implementation would emit a for loop for every map, reduce
and iterate pattern. Fortunately, the Lirr compiler often stati-
cally infers if the number of threads for a map is larger, equal
or lower than the number of elements to process. This is the
case in lines 20 and 30 which correspond to the mapLcl in
line 5 and 3 in the original Listing 1. This is possible be-
cause get_local_id(®) returns a positive number. If we infer
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1 kernel void KERNEL (const global float *restrict x,
2 const global float *restrict vy,
3 global float *z,
1
5

int N) {
local float tmpl[64]; local float tmp2[64];
local float tmp3[32];
6 float accl; float acc2;

7 for (int wg_id = get_group_id(0); wg_id < N/128;
8 wg_id += get_num_groups(0)) {
9 { int 1_id =

get_local_id(0);
10 accl = 0.0f;
11 for (int i = 0; i < 2; i += 1) {
12 accl = multAndSumUp (accl,
13 x[2 * 1_id + 128 * wg_id + i],
14 y[2 * 1_id + 128 * wg_id + i]); }
15 tmpl[l_id] = id(accl); }
16 barrier (CLK_LOCAL_MEM_FENCE);
17 int size = 64;
18 local float *in = tmpl; local float *out = tmp2;
19 for (int iter = 0; iter < 6; iter += 1) {
20 if (get_local_id(®) < size / 2) {
21 acc2 = 0.0f;
22 for (int i = 0; i < 2; i += 1) {
23 acc2 = add(acc2, in[2 * 1_id + i]); }
24 out[1l_id] = id(acc2); }
25 barrier (CLK_LOCAL_MEM_FENCE);
26 size = size / 2;
27 in = (out == tmpl) ? tmpl : tmp3;
28 out = (out == tmpl) ? tmp3 : tmpl;
29 barrier (CLK_LOCAL_MEM_FENCE); }
30 if (get_local_id(®) < 1) {
31 z[wg_id] = id(tmp3[1l_id]); }
32 barrier (CLK_GLOBAL_MEM_FENCE); } }

Figure 7. Compiler-generated OpenCL kernel for the dot
product example shown in Listing 1

that the loop executes exactly once by every thread we elimi-
nate the loop completely, which is the case in line 9 which
corresponds to the mapLcl in line 8 in Listing 1.

Performing control flow simplification is beneficial in
two ways: first, execution time is improved as additional
instructions from the loop are avoided; and, secondly, in
general fewer registers are required when loops are avoided.

5.6 Summary

In this section we have seen how Lirt IR is compiled to
OpenCL. We used the dot product computation from Listing 1
as a running example to discuss how types are inferred,
memory is allocated, concise array accesses are generated,
barriers are eliminated, and, finally, the OpenCL kernel with
simplified control flow shown in Figure 7 is generated. The
next section investigates the overall performance as well as
the impact of the optimizations discussed in this section.

6. Experimental Setup

Two GPUs are used for the evaluation: an AMD Radeon R9
295X2 with AMD APP SDK 2.9.214.1 and driver 1598.5,
as well as an Nvidia GTX Titan Black with CUDA 8.0.0
and driver 367.35. All experiments are performed using
single precision floats. We report the median runtime of
10 executions for each kernel measured using the OpenCL
profiling API. We focus on the quality of the kernel code and,
therefore, ignore data transfer times. For benchmarks with
multiple kernels, we sum up the kernel runtimes.



. Characteristics Code size
Input Size
Program Source . . .
(Small and Large) Local Private R . Iteration High-level Low-level
Vectorization Coalescing OpenCL
memory memory space Lt IL Lirr IL

N-Body NVIDIA SDK 16K, 131K particles v’ N N N 1D 139 34 49
N-Body AMD SDK 16K, 131K particles N v’ N 1D 54 34 34
MD SHOC 12K, 74K particles v’ v’ 1D 50 34 34
K-Means Rodinia 0.2M, 0.8M points NG 1D 32 25 25
NN Rodinia 8M, 34M points v’ 1D 18 7 7
MRI-Q Parboil 32K, 262K pixels v’ v’ 1D 41 43 43
Convolution ~ NVIDIA SDK 4K?, 8K? images v’ v’ 2D 92 48 48
ATAX CLBlast 4K?, 8K? matrices v v 1D 426 30 64
GEMV CLBlast 4K?,8K? matrices v v 1D 213 15 32
GESUMMV  CLBlast 4K?, 8K? matrices v 1D 426 30 64
MM CLBlast, AMD 1K?, 4K? matrices v’ v v 2D 768 17 38
MM CLBlast, NVIDIA  1K?, 4K?> matrices v v’ v’ v’ 2D 768 17 65

Table 1. Overview, Characteristics, and Code size of the benchmarks

7. Experimental Evaluation

This section evaluates the quality of the Lirr compiler using
12 OpenCL hand-optimized kernels collected from various
sources shown in Table 1. These represent GPU programs
from different fields such as physics simulations (N-Body,
MD), statistics and machine learning (KMeans, NN), imaging
(MRI-Q), stencil (Convolution), and universally useful linear
algebra primitives (ATAX, GEMV, GESUMMYV, MM). The
characteristics of the reference implementations are described
in Table 1. Local and private memory denotes their usage for
storing data that is reused. The vectorization of memory or
compute operations is indicated as well as global memory
coalescing. Iteration space shows the thread organization
dimensionality when running the kernel.

7.1 Code Size

Table 1 also shows the code size in lines of code for each
benchmark. For Lirr we distinguish between the low-level
Lirr IL which is the input for the Lirr compiler discussed in
this paper and the high-level Lirr IL which is a portable
representation introduced in our prior paper [18] which
presents an automated process based on rewrite-rules to
automatically map the high-level to the low-level Lirt IL.
The numbers show that writing high-performance OpenCL
kernels is extremely challenging with 768 lines required for
an optimized matrix multiplication kernel. The benchmarks
in the Lirt IL are up to 45x shorter, especially the portable
high-level programs. The low-level Lirt programs are slightly
longer as they encode optimization choices explicitly.

7.2 Expressing OpenCL Optimizations in the Lirt IR

The benchmarks OpenCL implementations encode GPU
specific optimizations. Each implementation is represented
in the Lirr IR by mimicking the OpenCL reference code. We
are interested in testing the ability to represent differently
optimized programs using the Lirr patterns presented in
section 3. This section gives a brief overview of different
patterns of computation and communication are encoded.
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The N-Body implementation from the NVIDIA SDK
makes use of local memory to store particle locations ac-
cessed by multiple threads. In Lirr we represent this by copy-
ing the particle locations using map(id) nested inside the
toLocal pattern. By selecting one of the mapSeq, mapLcl,
and mapGlb patterns, we control how the data is copied in
the local memory. The AMD implementation does not use
local memory but vectorizes the operations expressed using a
combination of mapVec and asVector.

The Convolution benchmark applies tiling to improve per-
formance by exploiting locality. Overlapping tiles, required
by stencil applications, are created using the slide pattern.
Two-dimensional tiles are achieved by a clever composition
of slide with map and matrix transposition, which itself is
expressed using split, join, and gather. These 2D tiles are
then cooperatively copied into the local memory using the
toLocal(mapLcl(id)) pattern composition.

The CLBlast implementation of matrix-vector multipli-
cation (SGEMV) carefully loads elements from the global
memory using coalesced memory accesses. In the L1t IR the
gather pattern is used to influence which thread loads which
element from memory and by choosing the right permutation
accesses to the global memory are coalesced.

The MM implementations from CLBlast apples slightly
different optimizations for both GPUs. For NVIDIA CLBlast
uses a combination of filing in local memory, register block-
ing, and vectorization of global and local memory operations.
For AMD it also uses register blocking and vectorization but
not tiling in local memory. In the LiFt IR, tiling and register
blocking are represented by compositions of the split and
map patterns together with a matrix transposition, which is
itself expressed as combination of split, scatter/gather and
Jjoin as seen in section 3.2. The Lirr IR vectorize patterns are
used for vectorization.

The Lirr IR has proven to be powerful and flexible enough
to represent our set of benchmarks and their versatile GPU
optimizations. The next section investigates the performance
obtained when generating OpenCL code from the Lirr IR.
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Figure 8. Speedup of generated code compared to OpenCL reference implementations.

7.3 Performance Evaluation

Figure 8 shows the relative performance of the Lirr generated
code compared to the manually written OpenCL code on two
GPUs. For each benchmark, we compare the performance
of the hand-written OpenCL implementation with the perfor-
mance of the generated kernel from the corresponding LirFT
IR program. The different bars represent the performance
obtained with different optimizations enabled and will be
explain in the next section.

Concentrating on the right-most, dark red bar in each sub-
plot, we notice that the code generator is able to achieve
performance on-par with hand-written OpenCL kernels in
most cases. This clearly demonstrates that the functional Lirr
IR is able to express all the low-level details necessary to
produce very efficient OpenCL code. The generated code is
on average within 5% of the hand-written OpenCL implemen-
tation, which is quite a feat, considering how sensitive the
underlying OpenCL compilers are. As anecdotal evidence,
simply swapping statements around in our generated code for
matrix multiplication can result in a performance difference
of 3% on Nvidia for instance.

7.4 Evaluation of Optimization Impact

Figure 8 also shows the impact of each code generator op-
timization discussed in section 5. As can be seen, applying
none of the optimizations discussed in this paper, leads to an
average performance of only half the baseline. In extreme
cases, such as matrix multiplication and convolution, the gen-
erated code can be as much as 10x or even 20x slower than
the baseline. For convolution for instance, this is due to the
complexity of the memory accesses expressions resulting
from using the slide primitive. However, as can be seen on
the figure, the effect of array access simplification on perfor-
mance is very impressive, demonstrating the importance of
this optimization. In addition, disabling array access simpli-
fication generally leads to larger kernel code, up to 7MB of
source code in the case of matrix multiplication.
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Surprisingly, the barrier elimination and control-flow sim-
plification seems to have little effect on performance on both
machines. The largest impact is for the AMD version of N-
Body where the simplification of control plays an important
role since this AMD implementation does not use local mem-
ory. The control simplification is able to produce a kernel
with a single loop (the reduction) which corresponds to the
human-written implementation. On the other hand, without
the simplification of control-flow enabled, three loops are
produced which results in a 20% slowdown.

7.5 Summary

The experimental evaluation has shown that the optimizations
presented in this paper have a significant impact on the per-
formance of more complex applications with a performance
improvement of over 20 times. This results in generated code
matching the performance of manually tuned OpenCL code.

8. Conclusion

This paper has presented Lirt, a functional data-parallel in-
termediate representation for OpenCL. The Lirr IR abstracts
away many of the OpenCL concepts and optimizations pat-
terns typically found in hand-written code. The functional
nature of Lirr makes it an ideal target for existing high-level
approaches based on parallel patterns.

By design, LiFr preserves high-level semantic information
which can be exploited by the Lirr compiler to generate
efficient OpenCL code. However, as seen in this paper,
generating efficient code is far from trivial and requires the
careful application of optimizations such as array access
simplification. Our evaluation shows that these optimizations
are crucial to achieve high performance and produce code on
par with hand-tuned kernels.
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A. Artifact Description

A.1 Abstract

The artifact contains the implementation of the Lirr compiler
described in the CGO 2017 paper Lirt: A Functional Data-
Parallel IR for High-Performance GPU Code Generation.
Furthermore, this artifact contains the scripts and reference
implementations required to reproduce the performance re-
sults presented in the paper. To validate the results build
Lirr and the reference implementations with the provided
scripts, run the benchmarks and, finally, the plotting script to
reproduce the results from Figure 8 in the paper.

A.2 Description
A.2.1 Check-List (Artifact Meta Information)

® Program: The Lirr compiler implemented in Scala; Benchmark
programs implemented in C/C++ using OpenCL.

® Compilation: With provided scripts via gcc/g++ and sbt.
® Data set: Provided with the corresponding benchmarks.

® Run-time environment: Linux with OpenCL

® Hardware: Any OpenCL enabled GPU

® QOutput: Runtime in CSV files and plot as PDF

® Experiment workflow: Git clone; (docker build and run);
run build scripts; run test scripts; run plotting script; observe
performance results

® Publicly available?: Yes

A.2.2 How Delivered

The artifact is hosted on gitlab at:
https://gitlab.com/michel-steuwer/cgo_2017_artifact
The artifact and its instructions are publicly available.

A.2.3 Hardware Dependencies

An OpenCL enabled GPU is required. In the paper a Nvidia
GTX Titan Black and an AMD Radeon R9 295X2 were used.
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A.2.4 Software Dependencies

LiFT requires Java 8, OpenCL, and a working C++ compiler
as its main dependencies. Detailed software dependencies are
described on the gitlab page. A Dockerfile is provided
which encapsulates all software dependencies.

A.3 Installation

After cloning the repository, build scripts are provided for
Lirr and the reference benchmark implementations.
Detailed installation descriptions are given on gitlab.

A.4 Experiment Workflow

After building Lirr and the reference implementations, pro-
vided scripts should be used for running all benchmarks and
plotting the results.

Detailed descriptions for the experiment workflow are
provided on the gitlab page.

A.5 Evaluation and Expected Result

The main results of the artifact evaluation is to reproduce
the performance comparison given in Figure 8 of the paper.
Depending on the precise GPU used for evaluation we expect
the results to show a similar performance trend as reported
in the paper between the Lirr generated OpenCL kernels
compared to the reference implementations.

The reviewers are invited to investigate the implementation
of the Lirr compiler and evaluate it against the description
given in the paper.

A.6 Submission and Reviewing Methodology

This artifact was successfully evaluated during the artifact
evaluation of CGO 2017. The authors would like to thank
the reviewers. Their feedback helped to significantly improve
this artifact. Especially, the public discussions proved to be
valuable for quickly addressing issues.

The methodology used for evaluating this artifact is de-
scribed on the following webpage:
http://cTuning.org/ae/submission-20161020.html.


https://gitlab.com/michel-steuwer/cgo_2017_artifact
http://cTuning.org/ae/submission-20161020.html
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