Towards Mapping Lift to Deep Neural Network Accelerators

Naums Mogers
University of Edinburgh
United Kingdom
naums.mogers@ed.ac.uk

Michel Steuwer
University of Glasgow
United Kingdom
michel.steuwer@glasgow.ac.uk

Aaron Smith
University of Edinburgh
Microsoft Research
United Kingdom
aaron.smith@microsoft.com

Christophe Dubach
University of Edinburgh
United Kingdom
christophe.dubach@ed.ac.uk

Ryota Tomioka
Microsoft Research
United Kingdom
ryoto@microsoft.com

Dimitrios Vytiniotis*
DeepMind
United Kingdom
dvytin@google.com

Abstract
Deep Neural Network (DNN) accelerators enjoy a rise in popularity due to the ubiquity of DNN applications. Devices to accelerate DNNs – CPUs, GPUs, ASICs, FPGAs – vary significantly and pose an increasingly difficult challenge to extract performance from them. Approaches proposed to address this problem lack in either portability or extensibility.

Lift is a novel approach that produces performance-portable GPU and CPU code for linear algebra, sparse matrix and stencil computations. Lift uses rewrite rules to detect and transform patterns for parallelism, memory configuration and instruction set of the target hardware. This paper presents preliminary work in applying Lift to the generation of optimised code for DNN accelerators by mapping expressions to coarse-grained ISA primitives; discussion of the additions to the IR, type system, code generation and rewrite rules makes a case for extensibility of Lift.

Author Keywords
Compilation, Deep learning, Performance Portability

ACM Classification Keywords
[General and reference]: Performance; [Software and its engineering]: Source code generation; [Hardware]: Emerging languages and compilers; [Computer systems organization]: Neural networks

*Work done when author was employed by Microsoft Research
1 INTRODUCTION

Deep Neural Networks (DNNs) are compute-intensive and benefit from specialised accelerators. Approaches to hardware acceleration vary from repurposing Graphics Processing Units (GPUs) to designing new Application-Specific Integrated Circuits (ASICs) and synthesising new architectures on Field-Programmable Gate Array (FPGA) devices. GPUs are a good fit for DNN computations due to the abundance of floating-point units and large memory, that are required for training and inference in DNNs; they are economically affordable for research, small-scale production and offline mobile computations of DNNs.

ASICs can provide the best performance for DNNs since they can be tuned for optimal fit in silicon. However, design and production costs coupled with ever-changing computational demands of rapidly evolving DNNs make ASICs prerogative of big industry players. Examples of DNN ASICs include the Tensor Processing Units (TPUs) [6], Huawei Da Vinci architecture [9], the DianNao family [3] and Movidius Myriad [5].

FPGAs are a compromise between GPUs and ASICs in that they allow a great deal of customisability without the need to bear costs of redesigning silicon. Notable examples are Microsoft project BrainWave [2], work by Qiu et al. [10], Suda et al. [14] and Lu et al. [7].

The difficulty with all these platforms is in producing efficient code that makes optimal use of hardware resources. Detecting opportunities to use built-in optimised primitives is not trivial in itself; so is mapping computations onto hardware in a way that utilises available memory and computational units in an efficient way. Each platform requires an unique combination of optimisations and extensive domain knowledge which makes it costly to produce efficient implementations across multiple devices.

This paper discusses preliminary work towards extending performance portability to hardware accelerators for DNNs with Lift [12]. The functional data-parallel Lift language abstracts algorithms from implementation while capturing useful algorithmic information; this information is leveraged by the compiler for expression transformation using rewrite rules. The rules are used to explore parallel and memory mappings, as well as to detect opportunities to use platform-specific optimised primitives. Lift was shown to generate efficient OpenCL code for NVIDIA, AMD and ARM Mali GPUs [4], and Intel CPUs [12] for various applications. The work presented in this paper discusses how the Lift compiler is extended to detect patterns that are frequent in DNN implementations and exploit platform-specific built-in primitives to accelerate the computation.

This paper offers insights into how rewrite rules can be used to detect and rewrite combinations of generic primitives into coarse-grained operations supported by the accelerator. The functional programming paradigm makes it easy to reason about the algorithm both in terms of detecting useful patterns and exploring parallelisation mappings. Rewriting rules are reused across different platforms and are extendable to support new platforms and optimisations. This preliminary work shows Lift could be extended with new primitives, types, rewrite rules and code generation stages to support DNN accelerators.

2 BACKGROUND

DNN accelerators based on both ASICs and FPGAs – BrainWave, TPU, DianNao, Movidius – all rely on matrix multiplication units to accelerate DNNs since the most compute-intensive tasks – weighing input data in layers – can be implemented as homogeneous blocks of GEMV operations. Making use of these units requires carefully designing the code for maximum unit occupation; combined
with other optimisations such as tiling and memory access coalescing, the problem of detecting GEMV patterns becomes non-trivial. Even more difficult is this task when the hardware details are subject to change as is the case with FPGA-based BrainWave devices, which permit tweaking synthesised architecture.

Lift produces efficient OpenCL code using tiling, loop transformations, data layout and location optimisation, memory access number reduction [13]. Building on that, we discuss an extension to the Lift Intermediate Representation (IR) to allow detection of course-grained operations such as GEMV.

3 LIFT IR FOR DNNS

3.1 Data types
Lift DNN IR operates on the following types: Int, Floats of various bit-width and arrays. Int is used for literals. Float8, Float16 and Float32 types express the varying precision levels employed by DNN accelerators to reduce the amount of memory when possible. Arrays are used for storing vectors and matrices. The decision of whether an array is a vector or a matrix is made using array dimensionality and its memory type, which is embedded in its address space and reflects separation of memory banks in hardware.

The type checker traverses the expression to infer and check the types, which includes validating the requirements on memory types and array dimensionality imposed by parameter types and primitives.

3.2 Address spaces
Lift represents the hardware memory types by associating data with address spaces. For OpenCL, Lift uses GlobalMemory, LocalMemory and PrivateMemory. For DNN accelerators, we generalised these to DRAMMemory, ChipMemory, LiteralMemory, InputMemory and OutputMemory.

LiteralMemory is associated with all data that is not materialised in memory such as literals and expressions.

ChipMemory and DRAMMemory address spaces require specifying memory type as VectorMemType or MatrixMemType.

3.3 Lift primitives for DNNS
Lift primitives are used to specify memory access patterns, arithmetic operations and address space transfers. The primitives used for expressing DNNs include:

- Map, Slide, Reduce, Zip, Join and Split — these generic patterns are discussed in detail in [12].
- toChip moves data from the input memory or DRAM into the on-chip memory; toDRAM moves data from the on-chip to DRAM memory; toOutput writes data from the on-chip to output memory.
- Arithmetic operators that are used for neuron activation in DNNs: Add, Sub, Mul, Div, Neg, Mod, Tanh, ReLU, Sigm and Max. Depending on argument types, some of these primitives generate one of several platform-specific commands; for example, Mul generates either IntMul, VVMul or MVMul.

4 CODE GENERATION
The code generation starts with searching for patterns that can be expressed using platform-specific coarse-grained primitives. The transformed expression is type-checked again; then, the Lift compiler performs a series of passes on the expression to infer information on address spaces,
loop counter ranges and memory allocation. The compiler also traverses the expression Abstract Syntax Tree (AST) to build Views – data structures representing the memory access patterns for reading the input data and writing the output data at each AST nodes. Finally, the gathered information is used to build a platform-specific AST. The code generation process is discussed in more detail below.

During address space inference, the compiler assigns address spaces to subexpressions based on explicit memory transfers (toChip, toDRAM or toOutput), parameter types and arithmetic operators. This work extends the address space system to generalise over platform-specific memory spaces and introduces the concept of memory types for platforms that separate vector and matrix memory banks imposing restrictions on valid operations.

The memory allocation pass traverses the expression and infers the subexpression result memory based on primitives and data types and address spaces of their arguments. The allocated memory is either materialised as a buffer or used in code generation to access generated subexpressions for nesting.

For example, in an expression such as ReLU(Head(Transpose(Id(X)))), we allocate memory for each primitive, but only materialise that of Id(), which is an identity function that forces materialisation of its arguments. The view of ReLU() argument looks like ViewHead(ViewTranspose(mem123)), where mem123 is the memory of Id(). The address space of ReLU() itself is LiteralMemory, so instead of materialising the generated expression will be saved for later using its memory as reference.

During View building, each subexpression is associated with input and output views for reading and writing into memory. Input views depend on nested expressions: the view of Map is ViewMap, the view of Zip is ViewZip, etc. Output views depend on outer expressions: for example, the output view of an expression followed by Join is ViewSplit.

The final major stage is generating platform-specific AST. During code generation, the compiler lowers the abstract primitives such as Add and Mul to their typed counterparts such as IntAdd, VVAdd and MVMul depending on argument types. This work extends the compiler to allow deep nesting of generated subtrees as opposed to using memory to store intermediate results and depending on the platform compiler such as OpenCL to do copy propagation.

5 EXPLORATION

Rewriting in Lift is used to generate a search space of expression transformations with varying performance. For DNN expressions, we reuse generic rules introduced for OpenCL such as map fusion and fission; shown in Listing 1.

```java
// mapFusion:
Map(f)(Map(g)) → Map(f(g))

// mapFissionWithZipOutside:
Map(fun(x => . . ((f(Get(x, i))))(Zip(. . ., y, . .))) →
Map(fun(z => . . ((Get(z, i))))(Zip(. . , Map(f)(y), . .)))

// vectoriseMapZip:
Map(fun(y => fabstract(Get(y, 0), . . , Get(y, n))))(
  Zip(X0, . . , Xn) → fvectorised(X0, . . , Xn)

Listing 1: Examples of generic rewrite rules: map fusion joins maps, map fission splits Maps while taking care of preceding Zips, vectorisation removes Maps from outside the primitives that accept argument types on both sides of the rewrite rule.
Join(Map(row => h(Reduce(Add(), 0)(
    Mul(row, vector)))))(matrix)
  ⇒ h(Mul(matrix, vector))

Listing 2: GEMV rewrite rule

Reduce(f, init) ⇒ f(init, Reduce(f, 0))

Listing 3: The rewrite rule for extracting the initialising expression from Reduce

To make use of matrix-vector multiplication units in DNN accelerators, the rewrite rule presented in Listing 2 replaces the GEMV pattern with Mul primitive that is later translated into a platform-specific command MVmul. For generalisability, this GEMV rule is strict in matching AST nodes, so the compiler uses other rules to lower expressions to the matchable form.

Using the rewrite rule shown in Listing 3, Lift hoists the accumulator value expression outside of Reduce, which can only be applied to commutative functions. In this rule, zero has to be the neutral element with respect to $f$.

An example of rewriting is shown in Listing 4 using an expression implementing a fully connected layer with a bias ($B$) and an activation function (ReLU). In six steps, a generic Lift expression (top) is transformed into a compilable expression (bottom) that benefits from built-in platform-specific primitives. First, the compiler rewrites the GEMV pattern in a form where the pattern can be detected by the corresponding rewrite rule. The first four rewrites extract the bias value from inside Reduce. Then, Map is replaced with scalar addition with the addition operator, which can generate vectorised addition.

Listing 4: Fully connected layer rewriting steps
6 RELATED WORK
Delite [15] is a compiler framework that provides tools to define Domain-Specific Languages (DSL) that reuse parallel patterns, optimise and generate platform-specific high-performance code using a single backend. Lift benefits from better performance portability thanks to reusability of rewrite rules across hardware platforms, whereas Delite hard-codes device-specific optimisations in each backend.

Halide [11] is another approach to simplify high-performance code generation: by decoupling algorithm descriptions from optimisations (schedules), Halide takes the problem of code tuning out of the hands of the application developer. Similarly to Delite, it suffers from limited portability due to hard-coded optimisations for a restricted set of platforms.

Building upon Halide principles and IR, TVM [1] and NNVM [8] together provide a comprehensive framework for cross-platform optimisation of neural networks. NNVM converts workloads described in different encodings to a standardised computational graph, while TVM handles high-level operator fusion, data layout transformation and tensor optimisation. TVM lacks in extensibility since each optimisation is hard-coded as a separate module, whereas Lift can be extended with principally new optimisations by adding new rewrite rules.

7 CONCLUSION
This work-in-progress paper describes a case study of how a function IR, coupled with rewriting, can be used to map computations onto DNN accelerators such as Brainwave, TPU and DianNao. This proposed extension of Lift aims to provide a way to express programs in a high-level platform-independent language and automatically tune generated code to various DNN accelerators through optimisation space exploration. Compared to existing solutions, Lift is extensible both in terms of optimisation methods and target platforms through a system of fine-grained rewrite rules and modular code generators.

Our preliminary work has shown that Lift is able to detect the most ubiquitous pattern in DNNs: matrix-vector multiplication. We have shown how to optimise a generic Lift expression for fully connected layer by transforming it to use a built-in primitive for GEMV. Stacking the produced expression, we get a Multilayer Perceptron, a neural architecture that is responsible for most of the TPU workload in Google servers [6].

We intend to build up on this in future work by evaluating the approach on DNN architectures such as VGG, ResNet and GoogleNet on a range of DNN accelerators such as TPU, BrainWave, Huawei Da Vinci architecture and Movidius Myriad. We are confident that the technique presented in this paper is generic enough to work on other types of layers and different hardware platforms.

ACKNOWLEDGEMENTS
We would like to thank Federico Pizzuti for help with Lift extension; this work was supported by Microsoft Research and by the Engineering and Physical Sciences Research Council (grant EP/L01503X/1), EPSRC Centre for Doctoral Training in Pervasive Parallelism at the University of Edinburgh, School of Informatics.

REFERENCES


